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Abstract 31 

This paper presents a new approach to inverting (fitting) models of coupled dynamical 32 

systems based on state-of-the-art (cubature) Kalman filtering. Crucially, this inversion furnishes 33 

posterior estimates of both the hidden states and parameters of a system, including any unknown 34 

exogenous input. Because the underlying generative model is formulated in continuous time 35 

(with a discrete observation process) it can be applied to a wide variety of models specified with 36 

either ordinary or stochastic differential equations. These are an important class of models that 37 

are particularly appropriate for biological time-series, where the underlying system is specified 38 

in terms of kinetics or dynamics (i.e., dynamic causal models). We provide comparative 39 

evaluations with generalized Bayesian filtering (dynamic expectation maximization) and 40 

demonstrate marked improvements in accuracy and computational efficiency. We compare the 41 

schemes using a series of difficult (nonlinear) toy examples and conclude with a special focus on 42 

hemodynamic models of evoked brain responses in fMRI. Our scheme promises to provide a 43 

significant advance in characterizing the functional architectures of distributed neuronal systems, 44 

even in the absence of known exogenous (experimental) input; e.g., resting state fMRI studies 45 

and spontaneous fluctuations in electrophysiological studies. Importantly, unlike current 46 

Bayesian filters (e.g. DEM), our scheme provides estimates of time-varying parameters, which 47 

we will exploit in future work on the adaptation and enabling of connections in the brain. 48 
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Introduction 72 

The propagation of neuronal activity in the brain is a dynamic process, which mediates the 73 

communication among functional brain areas. Although, recent advances in neuroimaging allow 74 

for greater insights into brain function, all available noninvasive brain mapping techniques 75 

provide only indirect measures of the underlying electrophysiology. For example, we cannot 76 

observe the time-varying neuronal activation in the brain but we can measure the electrical field 77 

it generates on the scalp using electroencephalography (EEG). Similarly, in functional magnetic 78 

resonance imaging (fMRI) we measure hemodynamic responses, which represent changes in 79 

blood flow and blood oxygenation that follow neuronal activation. Crucially, the form of this 80 

hemodynamic response can vary across subjects and different brain regions (Aguirre et al., 1998; 81 

Handwerker et al., 2004). This complicates the estimation of hidden neuronal states and 82 

identification of effective connectivity (i.e. directed influence) between brain regions (David, 83 

2009; David et al., 2008; Friston, 2009; Roebroeck et al., 2009a, b). 84 

In general, the relationship between initial neuronal activation and our observations rests on 85 

a complex electro/bio-physiological process. If this process is known and well described, it can 86 

be approximated by mathematical modeling. Inversion of the ensuing model allows us to 87 

estimate hidden states of neuronal systems (e.g., the neuronal activation) from observations. The 88 

resulting estimate will be affected by the accuracy of the inversion (formulated as an 89 

optimization problem) and by the precision of the observation itself (temporal resolution, signal 90 

to noise ratio (SNR), etc.). In signal processing theory, this problem is called blind deconvolution 91 

and is described as estimating the unknown input to a dynamic system, given output data, when 92 

the model of the system contains unknown parameters. A note on terminology is needed here: 93 

although convolution is usually defined as a linear operation, the term deconvolution is generally 94 

used in reference to the inversion of nonlinear (generalized) convolution models (i.e. 95 

restoration); we adhere to this convention. 96 

In fMRI, the physiological mechanisms mediating the relationship between neuronal 97 

activation and vascular/metabolic systems have been studied extensively (Attwell et al., 2010; 98 

Iadecola, 2002; Magistretti and Pellerin, 1999) and models of hemodynamic responses have been 99 

described at macroscopic level by systems of differential equations. The hemodynamic model 100 

(Friston et al., 2000) links neuronal activity to flow and subsumes the balloon-windkessel model 101 



(Buxton et al., 1998; Mandeville et al., 1999), linking flow to observed fMRI signals. The 102 

hemodynamic model includes model of neurovascular coupling (i.e., how changes in neuronal 103 

activity cause a flow-inducing signal) and hemodynamic processes (i.e. changes in cerebral 104 

blood flow (CBF), cerebral blood volume (CBV), and total de-oxyhemoglobin (dHb)). In this 105 

paper, we will focus on a hemodynamic model of a single region in fMRI, where experimental 106 

studies suggest that the neuronal activity that drives hemodynamic responses corresponds more 107 

afferent synaptic activity (as opposed to efferent spiking activity (Lauritzen, 2001; Logothetis, 108 

2002)). In the future work, we will use exactly the same scheme to model distributed neuronal 109 

activity as observed in multiple regions. 110 

The hemodynamic model is nonlinear in nature (Berns et al., 1999; Mechelli et al., 2001). 111 

Therefore, to infer the hidden states and parameters of the underlying system, we require 112 

methods that can handle these nonlinearities. In Friston et al. (2000), the parameters of a 113 

hemodynamic model were estimated using a Volterra kernel expansion to characterize the 114 

hemodynamic response. Later, Friston et al. (2002) introduced a Bayesian estimation framework 115 

to invert (i.e., fit) the hemodynamic model explicitly. This approach accommodated prior 116 

constraints on parameters and avoided the need for Volterra kernels. Subsequently, the approach 117 

was generalized to cover networks of coupled regions and to include parameters controlling the 118 

neuronal coupling (effective connectivity) among brain regions (Friston et al., 2003). The 119 

Bayesian inversion of these models is known as dynamic causal modeling (DCM) and is now 120 

used widely to analyses effective connectivity in fMRI and electrophysiological studies. 121 

However, current approaches to hemodynamic and causal models only account for noise at the 122 

level of the measurement; where this noise includes thermally generated random noise and 123 

physiological fluctuations. This is important because physiological noise represents stochastic 124 

fluctuations due to metabolic and vascular responses, which affect the hidden states of the 125 

system; furthermore, neuronal activity can show pronounced endogenous fluctuations (Biswal et 126 

al., 1995; Krüger and Glover, 2001). Motivated by this observation, Riera et al. (2004) proposed 127 

a technique based on a fully stochastic model (i.e. including physiological noise) that used the 128 

local linearization filter (LLF) (Jimenez and Ozaki, 2003), which can be considered a form of 129 

extended Kalman filtering (EKF) (Haykin, 2001) for continuous dynamic systems. Besides 130 

estimating hemodynamic states and parameters, this approach allows one to estimate the 131 

system’s input, i.e. neuronal activity; by its parameterization via radial basis functions (RBFs). In 132 



Riera et al. (2004), the number of RBFs was considered fixed a priori, which means that the 133 

solution has to lie inside a regularly distributed but sparse space (otherwise, the problem is 134 

underdetermined). Recently, the LLF technique was applied by Sotero at al. (2009) to identify 135 

the states and parameters of a metabolic/hemodynamic model. 136 

The hemodynamic response and hidden states of hemodynamic models possess strong 137 

nonlinear characteristics, which are prescient with respect to stimulus duration (Birn et al., 2001; 138 

Miller et al., 2001). This makes one wonder whether a linearization approach such as LLF can 139 

handle such strong nonlinearities. Johnston et al. (2008) proposed particle filtering, a sequential 140 

Monte Carlo method, that accommodates true nonlinearities in the model. The approach of 141 

Johnston et al. was shown to be both accurate and robust, when used to estimate hidden 142 

physiologic and hemodynamic states; and was superior to LLF, though a suboptimal numerical 143 

procedure was used in evaluating LLF. Similarly, two-pass particle filtering, including a 144 

smoothing (backwards pass) procedure, was introduced by Murray et al. (2008). Another attempt 145 

to infer model parameters and hidden states used the unscented Kalman filter (UKF), which is 146 

more suitable for highly nonlinear problems (Hu et al., 2009). Finally, Jacobson et al. (2008) 147 

addressed inference on model parameters, using a Metropolis–Hastings algorithm for sampling 148 

their posterior distribution. 149 

None of the methods mentioned above, except (Riera et al., 2004) with its restricted 150 

parameterization of the input, can perform a complete deconvolution of fMRI signals and 151 

estimate both hidden states and input; i.e. the neuronal activation, without knowing the input 152 

(stimulation function). Here, an important exception is the methodology introduced by Friston et 153 

al. (2008) called dynamic expectation maximization (DEM) and its generalizations: variational 154 

filtering (Friston, 2008a) and generalized filtering (Friston et al., 2010). DEM represents a 155 

variational Bayesian technique (Hinton and van Camp, 1993; MacKay, 1995), that is applied to 156 

models formulated in terms of generalized coordinates of motion. This scheme allows one to 157 

estimate not only the states and parameters but also the input and hyperparameters of the system 158 

generating those states. Friston et al. (2008) demonstrated the robustness of DEM compared to 159 

standard Bayesian filtering methods, particularly the extended Kalman filter and particle filter, 160 

on a selection of difficult nonlinear/linear dynamic systems. They concluded that standard 161 



methods are unable to perform joint estimation of the system input and states, while inferring the 162 

model parameters. 163 

In this paper, we propose an estimation scheme that is based on nonlinear Kalman filtering, 164 

using the recently introduced cubature Kalman filter (CKF) (Arasaratnam and Haykin, 2009), 165 

which is recognized as the closest known approximation to Bayesian filtering. Our procedure 166 

applies a forward pass using the CKF that is finessed by a backward pass of the cubature Rauch-167 

Tung-Striebel smoother. Moreover, we utilize the efficient square-root formulation of these 168 

algorithms. Crucially, we augment the hidden states with both parameters and inputs, enabling us 169 

to identify hidden states, model parameters and estimate the system input. We will show that we 170 

can obtain accurate estimates of hidden hemodynamic and neuronal states, well beyond the 171 

temporal resolution of fMRI. 172 

The paper is structured as follows: First, we review the general concept of nonlinear 173 

continuous-discrete state-space models for simultaneous estimation of the system hidden states, 174 

its input and parameters. We then introduce the forward-backward cubature Kalman estimation 175 

procedure in its stable square-root form, as a suitable method for solving this complex inversion 176 

problem. Second, we provide a comprehensive evaluation of our proposed scheme and compare 177 

it with DEM. For this purpose, we use the same nonlinear/linear dynamic systems that were used 178 

to compare DEM with the EKF and particle filter algorithms (Friston et al., 2008). Third, we 179 

devote special attention to the deconvolution problem, given observed hemodynamic responses; 180 

i.e. to the estimation of neuronal activity and parameter identification of a hemodynamic model. 181 

Again, we provide comparative evaluations with DEM and discuss the advantages and 182 

limitations of each approach, when applied to fMRI data.  183 

Nonlinear continuous-discrete state-space models 184 

Nonlinear filtering problems are typically described by state-space models comprising a 185 

process and measurement equation. In many practical problems, the process equation is derived 186 

from the underlying physics of a continuous dynamic system, and is expressed in the form of a 187 

set of differential equations. Since the measurements ݕ are acquired by digital devices; i.e. they 188 

are available at discrete time points ሺݐ ൌ 1,2, … , ܶሻ, we have a model with a continuous process 189 



equation and a discrete measurement equation. The stochastic representation of this state-space 190 

model, with additive noise, can be formulated as: 191 

௧ݔ݀ ൌ ,௧ݔሺܐ ,௧ߠ ,௧ݑ ݐሻ݀ݐ  ,௧ݔሺܔ ,௧ߚሻ݀ݐ

௧ݕ ൌ ,௧ݔሺ ,௧ߠ ,௧ݑ ሻݐ  ,௧ݎ 
 (1)

where ߠ௧  represents unknown parameters of the equation of motion ܐ  and the measurement 192 

function , respectively; ݑ௧ is the exogenous input (the cause) that drives hidden states or the 193 

response; ݎ௧ is a vector of random Gaussian measurement noise, ݎ௧~ࣨሺ0, ܴ௧ሻ; ܔሺݔ௧,  ሻ can be a 194ݐ

function of the state and time; and ߚ௧ denotes a Wiener process or state noise that is assumed to 195 

be independent of states and measurement noise. 196 

The continuous time formulation of the stochastic differential equations (SDE) in (1) can 197 

also be expressed using Riemann and Ito integrals (Kloeden and Platen, 1999): 198 

௧ା∆௧ݔ ൌ ௧ݔ   ,௧ݔሺܐ ,௧ߠ ,௧ݑ ௧ା∆௧ݐሻ݀ݐ
௧   ,௧ݔሺܔ ௧ߚሻ݀ݐ

௧ା∆௧
௧ , (2)

where the second integral is stochastic. This equation can be further converted into a discrete-199 

time analogue using numerical integration such as Euler-Maruyama method or the local 200 

linearization (LL) scheme (Biscay et al., 1996; Ozaki, 1992). This leads to the standard form of a 201 

first order autoregressive process (AR(1)) of nonlinear state-space models: 202 

௧ݔ ൌ ,௧ିଵݔሺ ,௧ߠ ௧ሻݑ  ௧ݍ

௧ݕ ൌ ,௧ݔሺ ,௧ߠ ௧ሻݑ  ,௧ݎ
 (3)

where ݍ௧ is a zero-mean Gaussian state noise vector; ݍ௧~ࣨሺ0, ܳ௧ሻ. Our preference is to use LL-203 

scheme, which has been demonstrated to improve the order of convergence and stability 204 

properties of conventional numerical integrators (Jimenez et al., 1999). In this case, the function 205 

 is evaluated through: 206 

,௧ିଵݔሺ ,௧ߠ ௧ሻݑ ൎ ௧ିଵݔ  ௫݂
ିଵൣexp൫ ௫݂∆ݐ൯ െ ,௧ିଵݔሺܐ൧ܫ ,௧ߠ ௧ሻ, (4)ݑ

where ௫݂
  is a Jacobian of ܐ and ∆ݐ is the time interval between samples (up to the sampling 207 

interval). The LL method allows integration of a SDE near discretely and regularly distributed 208 

time instants, assuming local piecewise linearity. This permits the conversion of a SDE system 209 



into a state-space equation with Gaussian noise. A stable reconstruction of the trajectories of the 210 

state-space variables is obtained by a one step prediction. Note that expression in (4) is not 211 

always the most practical; it assumes the Jacobian has full rank. See (Jimenez, 2002) for 212 

alternative forms. 213 

Probabilistic inference 214 

The problem of estimating the hidden states (causing data), parameters (causing the 215 

dynamics of hidden states) and any non-controlled exogenous input to the system, in a situation 216 

when only observations are given, requires probabilistic inference. In Markovian setting, the 217 

optimal solution to this problem is given by the recursive Bayesian estimation algorithm which 218 

recursively updates the posterior density of the system state as new observations arrive. This 219 

posterior density constitutes the complete solution to the probabilistic inference problem, and 220 

allows us to calculate an “optimal” estimate of the state. In particular, the hidden state ݔ௧, with 221 

initial probability ሺݔሻ , evolves over time as an indirect or partially observed first-order 222 

Markov process, according to the conditional probability density ሺݔ௧|ݔ௧ିଵሻ. The observations 223 

 ௧ are conditionally independent, given the state, and are generated according to the conditional 224ݕ

posterior probability density ሺݕ௧|ݔ௧ሻ . In this sense, the discrete-time variant of state-space 225 

model presented in Eq. (3) can also be written in terms of transition densities and a Gaussian 226 

likelihood: 227 

௧ିଵሻݔ|௧ݔሺ ൌ ࣨሺݔ௧|ሺݔ௧ିଵ, ,௧ݑ ,௧ሻߠ ܳሻ

௧ሻݔ|௧ݕሺ ൌ ࣨሺݕ௧|ሺݔ௧, ,௧ߠ ,௧ሻݑ ܴሻ.
 (5)

The state transition density ሺݔ௧|ݔ௧ିଵሻ is fully specified by  and the state noise distribution 228 

 ௧ሻ fully specify the observation 229ݎሺ and the measurement noise distribution  ௧ሻ, whereasݍሺ

likelihood ሺݕ௧|ݔ௧ሻ. The dynamic state-space model, together with the known statistics of the 230 

noise (and the prior distribution of the system states), defines a probabilistic generative model of 231 

how system evolves over time and of how we (partially or inaccurately) observe this hidden state 232 

(Van der Merwe, 2004).  233 

Unfortunately, the optimal Bayesian recursion is usually tractable only for linear, Gaussian 234 

systems, in which case the closed-form recursive solution is given by the classical Kalman filter 235 



(Kalman, 1960) that yields the optimal solution in the minimum-mean-square-error (MMSE) 236 

sense, the maximum likelihood (ML) sense, and the maximum a posteriori (MAP) sense. For 237 

more general real-world (nonlinear, non-Gaussian) systems the optimal Bayesian recursion is 238 

intractable and an approximate solution must be used. 239 

Numerous approximation solutions to the recursive Bayesian estimation problem have been 240 

proposed over the last couple of decades, in a variety of fields. These methods can be loosely 241 

grouped into the following four main categories: 242 

• Gaussian approximate methods: These methods model the pertinent densities by Gaussian 243 

distributions, under assumption that a consistent minimum variance estimator (of the 244 

posterior state density) can be realized through the recursive propagation and updating of the 245 

first and second order moments of the true densities. Nonlinear filters that fall under this 246 

category are (in chronological order): a) the extended Kalman filter (EKF), which linearizes 247 

both the nonlinear process and measurement dynamics with a first-order Taylor expansion 248 

about current state estimate; b) the local linearization filter (LLF) is similar to EKF, but the 249 

approximate discrete time model is obtained from piecewise linear discretization of nonlinear 250 

state equation; c) the unscented Kalman filter (UKF) (Julier et al., 2002) chooses 251 

deterministic sample (sigma) points that capture the mean and covariance of a Gaussian 252 

density. When propagated through the nonlinear function, these points capture the true mean 253 

and covariance up to a second-order of the nonlinear function; d) the divided difference filter 254 

(DDF) (Norgaard et al., 2000) uses Stirling’s interpolation formula. As with the UKF, DDF 255 

uses a deterministic sampling approach to propagate Gaussian statistics through the nonlinear 256 

function; e) the Gaussian sum filters (GSF) approximates both the predicted and posterior 257 

densities as sum of Gaussian densities, where the mean and covariance of each Gaussian 258 

density is calculated using separate and parallel instances of EKF or UKF; f) the quadrature 259 

Kalman filter (QKF) (Ito and Xiong, 2002) uses the Gauss-Hermite numerical integration 260 

rule to calculate the recursive Bayesian estimation integrals, under a Gaussian assumption; g) 261 

the cubature Kalman filter (CKF) is similar to UKF, but uses the  spherical-radial integration 262 

rule. 263 

• Direct numerical integration methods: these methods, also known as grid-based filters (GBF) 264 

or point-mass method, approximate the optimal Bayesian recursion integrals with large but 265 



finite sums over a uniform N-dimensional grid that covers the complete state-space in the 266 

area of interest. For even moderately high dimensional state-spaces, the computational 267 

complexity can become untenably large, which precludes any practical use of these filters 268 

(Bucy and Senne, 1971). 269 

• Sequential Monte-Carlo (SMC) methods: these methods (called particle filters) use a set of 270 

randomly chosen samples with associated weights to approximate the density (Doucet et al., 271 

2001). Since the basic sampling dynamics (importance sampling) degenerates over time, the 272 

SMC method includes a re-sampling step. As the number of samples (particles) becomes 273 

larger, the Monte Carlo characterization of the posterior density becomes more accurate. 274 

However, the large number of samples often makes the use of SMC methods computationally 275 

prohibitive.  276 

• Variational Bayesian methods: variational Bayesian methods approximate the true posterior 277 

distribution with a tractable approximate form. A lower bound on the marginal likelihood 278 

(evidence) of the posterior is then maximized with respect to the free parameters of this 279 

approximation (Jaakkola, 2000). 280 

The selection of suitable sub-optimal approximate solutions to the recursive Bayesian 281 

estimation problem represents a trade-off between global optimality on one hand and 282 

computational tractability (and robustness) on the other hand. In our case, the best criterion for 283 

sub-optimality is formulated as: “Do as best as you can, and not more”. Under this criterion, the 284 

natural choice is to apply the cubature Kalman filter (Arasaratnam and Haykin, 2009). The CKF 285 

is the closest known direct approximation to the Bayesian filter, which outperforms all other 286 

nonlinear filters in any Gaussian setting, including particle filters (Arasaratnam and Haykin, 287 

2009; Fernandez-Prades and Vila-Valls, 2010; Li et al., 2009). The CKF is numerically accurate, 288 

can capture true nonlinearity even in highly nonlinear systems, and it is easily extendable to high 289 

dimensional problems (the number of sample points grows linearly with the dimension of the 290 

state vector). 291 

Cubature Kalman filter 292 

The cubature Kalman filter is a recursive, nonlinear and derivative free filtering algorithm, 293 

developed under Kalman filtering framework. It computes the first two moments (i.e. mean and 294 

covariance) of all conditional densities using a highly efficient numerical integration method 295 



(cubature rules). Specifically, it utilizes the third-degree spherical-radial rule to approximate the 296 

integrals of the form (nonlinear function × Gaussian density) numerically using a set of ݉ 297 

equally weighted symmetric cubature points ሼߦ, ߱ሽୀଵ
 : 298 

 ;ݔሻࣨሺݔሺ 0, ݔேሻ݀ܫ ൎ ∑ ߱ሺߦሻ
ୀଵԹಿ , (6)

ߦ ൌ ට
݉
2

ሾܫே, െܫேሿ , ߱ ൌ
1
݉ , ݅ ൌ 1,2, … , ݉ ൌ 2ܰ, (7)

where ߦ is the i-th column of the cubature points matrix ߦ with  weights ߱ and ܰ is dimension 299 

of the state vector. 300 

In order to evaluate the dynamic state-space model described by (3), the CKF includes two 301 

steps: a) a time update, after which the predicted density ሺݔ௧|ݕଵ௧ିଵሻ ൌ ࣨሺݔො௧|௧ିଵ, ௧ܲ|௧ିଵሻ is 302 

computed; and b) a measurement update, after which the posterior density ሺݔ௧|ݕଵ௧ሻ ൌ303 

ࣨሺݔො௧|௧, ௧ܲ|௧ሻ is computed. For a detailed derivation of the CKF algorithm, the reader is referred 304 

to (Arasaratnam and Haykin, 2009). We should note that even though CKF represents a 305 

derivative-free nonlinear filter, our formulation of the continuous-discrete dynamic system 306 

requires first order partial derivatives implicit in the Jacobian, which is necessary for 307 

implementation of LL scheme. Although, one could use simple Euler’s methods to approximate 308 

the numerical solution of the system (Sitz et al., 2002), local linearization generally provides 309 

more accurate solutions (Valdes Sosa et al., 2009). Note that since the Jacobian is only needed to 310 

discretise continuous state variables in the LL approach (but for each cubature point), the main 311 

CKF algorithm remains discrete and derivative-free. 312 

Parameters and input estimation  313 

Parameter estimation sometimes referred to as system identification can be regarded as a 314 

special case of general state estimation in which the parameters are absorbed into the state 315 

vector. Parameter estimation involves determining the nonlinear mapping: 316 

௧ݕ ൌ ࣞሺݔ௧; ௧ሻ, (8)ߠ

where the nonlinear map ࣞሺ. ሻ is, in our case, the dynamic model ሺ. ሻ parameterized by the 317 

vector ߠ௧. The parameters ߠ௧ correspond to a stationary process with an identity state-transition 318 

matrix, driven by an “artificial” process noise ݓ௧~ࣨሺ0, ௧ܹሻ  (the choice of variance ௧ܹ 319 



determines convergence and tracking performance and is generally small). The input or cause of 320 

motion on hidden states ݑ௧ can also be treated in this way, with input noise ݒ௧~ࣨሺ0, ௧ܸሻ. This is 321 

possible because of the so-called natural condition of control (Arasaratnam and Haykin, 2009), 322 

which says that the input ݑ௧ can be generated using the state prediction ݔො௧|௧ିଵ.  323 

A special case of system identification arises when the input to the nonlinear mapping 324 

function ࣞሺ. ሻ , i.e. our hidden states ݔ௧ , cannot be observed. This then requires both state 325 

estimation and parameter estimation. For this dual estimation problem, we consider a discrete-326 

time nonlinear dynamic system, where the system state ݔ௧, the parameters ߠ௧ and the input ݑ௧, 327 

must be estimated simultaneously from the observed noisy signal ݕ௧. A general theoretical and 328 

algorithmic framework for dual Kalman filter based estimation was presented by Nelson (2000) 329 

and Van der Merwe (2004). This framework encompasses two main approaches, namely joint 330 

estimation and dual estimation. In the dual filtering approach, two Kalman filters are run 331 

simultaneously (in an iterative fashion) for state and parameter estimation. At every time step, 332 

the current estimate of the parameters ߠ௧ is used in the state filter as a given (known) input and 333 

likewise, the current estimate of the state ݔො௧ is used in the parameter filter. This results in a step-334 

wise optimization within the joint state-parameter space. On the other hand, in the joint filtering 335 

approach, the unknown system state and parameters are concatenated into a single higher-336 

dimensional joint state vector, ݔ௧ ൌ ሾݔ௧, ,௧ݑ  ௧ሿ். It was shown in (Van der Merwe, 2004) that 337ߠ

parameter estimation based on nonlinear Kalman filtering represents an efficient online 2nd order 338 

optimization method that can be also interpreted as a recursive Newton-Gauss optimization 339 

method. They also showed that nonlinear filters like UKF and CKF are robust in obtaining 340 

globally optimal estimates, whereas EKF is very likely to get stuck in a non-optimal local 341 

minimum.  342 

There is a prevalent opinion that the performance of joint estimation scheme is superior to 343 

dual estimation scheme (Ji and Brown, 2009; Nelson, 2000; Van der Merwe, 2004). Therefore, 344 

the joint CKF is used below to estimate states, input, and parameters.  Note that since the 345 

parameters are estimated online with the states, the convergence of parameter estimates depends 346 

also on the length of the time series. 347 

The state-space model for joint estimation scheme is then formulated as: 348 



௧ݔ ൌ 
௧ݔ
௧ݑ
௧ߠ

൩ ൌ 
,௧ିଵݔሺ ,௧ିଵߠ ௧ିଵሻݑ

௧ିଵݑ
௧ିଵߠ

൩  
௧ିଵݍ
௧ିଵݒ
௧ିଵݓ

൩

௧ݕ ൌ ௧ሻݔሺ  ௧ିଵݎ

 (9)

Since the joint filter concatenates the state and parameter variables into a single state vector, it 349 

effectively models the cross-covariances between the state, input and parameters estimates: 350 

௧ܲ ൌ 
௫ܲ ௫ܲ௨ ௫ܲఏ

௨ܲ௫ ௨ܲ ௨ܲఏ

ఏܲ௫ ఏܲ௨ ఏܲ

 (10)

This full covariance structure allows the joint estimation framework not only to deal with 351 

uncertainty about parameter and state estimates (through the cubature-point approach), but also 352 

to model the interaction (conditional dependences) between the states and parameters, which 353 

generally provides better estimates. 354 

Finally, the accuracy of the CKF can be further improved by augmenting the state vector 355 

with all the noise components (Li et al., 2009; Wu et al., 2005), so that the effects of process 356 

noise, measurement noise and parameter noise are explicitly available to the scheme model. By 357 

augmenting the state vector with the noise variables (Eqs. 11 and 12), we account for uncertainty 358 

in the noise variables in the same manner as we do for the states during the propagation of 359 

cubature-points. This allows for the effect of the noise on the system dynamics and observations 360 

to be treated with the same level of accuracy as state variables (Van der Merwe, 2004). It also 361 

means that we can model noise that is not purely additive. Because this augmentation increases 362 

the number of cubature points (by the number of noise components), it may also capture high 363 

order moment information (like skew and kurtosis). However, if the problem does not require 364 

more than first two moments, augmented CKF furnishes the same results as non-augmented 365 

CKF. 366 

Square-root cubature Kalman filter 367 

In practice, Kalman filters are known to be susceptible to numerical errors due to limited 368 

word-length arithmetic. Numerical errors can lead to propagation of an asymmetric, non-369 

positive-definite covariance, causing the filter to diverge (Kaminski et al., 1971). As a robust 370 

solution to this, a square-root Kalman filter is recommended. This avoids the matrix square-371 



rooting operations ܲ ൌ ்ܵܵ that are necessary in the regular CKF algorithm by propagating the 372 

square-root covariance matrix ܵ directly. This has important benefits: preservation of symmetry 373 

and positive (semi)definiteness of the covariance matrix, improved numerical accuracy, double 374 

order precision, and reduced computational load. Therefore, we will consider the square-root 375 

version of CKF (SCKF), where the square-root factors of the predictive posterior covariance 376 

matrix are propagated (Arasaratnam and Haykin, 2009). 377 

Bellow, we summarize the steps of SCKF algorithm. First, we describe the forward pass of a 378 

joint SCKF for the simultaneous estimation of states, parameters, and of the input, where we 379 

consider the state-space model in (9). Second, we describe the backward pass of the Rauch-380 

Tung-Striebel (RTS) smoother. This can be derived easily for SCKF due to its similarity with the 381 

RTS smoother for square-root UKF (Simandl and Dunik, 2006). Finally, we will use the 382 

abbreviation SCKS to refer to the combination of SCKF and our RTS square-root cubature 383 

Kalman smoother. In other words, SCKF refers to the forward pass, which is supplemented with 384 

a backward pass in SCKS. 385 

Forward filtering pass 386 

• Filter initialization 387 

During initialization step of the filter we build the augmented form of state variable: 388 

ොݔ
 ൌ ݔሾܧ

ሿ ൌ ሾݔ
், 0,0,0,0ሿ் ൌ ሾݔ, ,ݑ ,ߠ 0,0,0,0ሿ். (11)

The effective dimension of this augmented state is ܰ ൌ ݊௫  ݊௨  ݊ఏ  ݊  ݊௩  ݊௪  ݊ , 389 

where ݊௫ is the original state dimension, ݊௨ is dimension of the input, ݊ఏ is dimension of the 390 

parameter vector, ሼ݊, ݊௩, ݊௪ሽ are dimensions of  the noise components (equal to ݊௫, ݊௨, ݊ఏ , 391 

respectively), and ݊  is the observation noise dimension (equal to the number of observed 392 

variables). In a similar manner, the augmented state square-root covariance matrix is assembled 393 

from the individual (square-roots) covariance matrices of ݓ ,ݒ ,ݍ ,ߠ ,ݑ ,ݔ, and 394 :ݎ 

ܵ
 ൌ cholሺܧሾሺݔ

 െ ොݔ
ሻሺݔ

 െ ොݔ
ሻ்ሿሻ ൌ diag൫ܵ, ܵ, ܵ௩, ܵ௪బ, ܵ൯, (12)

ܵ ൌ ൦
ඥ ௫ܲ 0 0

0 ඥ ௨ܲ 0
0 0 ඥ ఏܲ

൪,  ܵ ൌ ඥܳ,  ܵ௩ ൌ √ܸ,  ܵ௪ ൌ √ܹ, ܵ ൌ √ܴ, (13)



where ௫ܲ, ௨ܲ, ఏܲ are process covariance matrices for states, input and parameters. ܳ, ܸ, ܹ are 395 

their corresponding process noise covariances, respectively and ܴ  is the observation noise 396 

covariance. The square-root representations of these matrices are calculated (13), where the 397 

“chol” operator represents a Cholesky factorization for efficient matrix square-rooting and 398 

“diag” forms block diagonal matrix. 399 

• Time update step 400 

We evaluate the cubature points (݅ ൌ 1,2, … , ݉ ൌ 2ܰ): 401 

ࣲ,௧ିଵ|௧ିଵ
 ൌ ܵ௧ିଵ|௧ିଵ

 ߦ  ො௧ିଵ|௧ିଵݔ
 , (14)

where the set of sigma points ߦ is pre-calculated at the beginning of algorithm (Eq. 7). Next, we 402 

propagate the cubature points through the nonlinear dynamic system of process equations and 403 

add noise components: 404 

ࣲ,௧|௧ିଵ
௫,௨,ఏ ൌ ۴ ቀ ࣲ,௧ିଵ|௧ିଵ

ሺ௫ሻ , ࣲ,௧ିଵ|௧ିଵ
ሺ௨ሻ , ࣲ,௧ିଵ|௧ିଵ

ሺఏሻ ቁ  ࣲ,௧ିଵ|௧ିଵ
ሺ,௩,௪ሻ , (15)

where  ۴ comprises ሾሺݔ௧ିଵ, ,௧ିଵߠ ,௧ିଵሻݑ ,௧ିଵݑ  as expressed in process equation (9). The 405 ܂௧ିଵሿߠ

superscripts distinguish among the components of cubature points, which correspond to the 406 

states ݔ , input ݑ , parameters ߠ   and their corresponding noise variables ሺݍ, ,ݒ ሻݓ  that are all 407 

included in the augmented matrix ࣲ. Note that the size of new matrix ࣲ,௧|௧ିଵ
௫,௨,ఏ  is only ሺ݊௫ 408 

݊௨  ݊ఏሻ ൈ ݉. 409 

We then compute the predicted mean ݔො௧|௧ିଵ and estimate the square-root factor of predicted 410 

error covariance ܵ௧|௧ିଵ by using weighted and centered (by subtracting the prior mean ݔො௧|௧ିଵ) 411 

matrix ܺ௧|௧ିଵ: 412 

ො௧|௧ିଵݔ ൌ ଵ


∑ ࣲ,௧|௧ିଵ
௫,௨,ఏ

ୀଵ . (16)

ܵ௧|௧ିଵ ൌ qrሺܺ௧|௧ିଵሻ, (17)

ܺ௧|௧ିଵ ൌ
1

√݉
ൣ ଵࣲ,௧|௧ିଵ

௫,௨,ఏ െ ,ො௧|௧ିଵݔ ଶࣲ,௧|௧ିଵ
௫,௨,ఏ െ ,ො௧|௧ିଵݔ … , ࣲ,௧|௧ିଵ

௫,௨,ఏ െ ො௧|௧ିଵ൧. (18)ݔ



The expression ܵ ൌ qrሺܺሻ denotes triangularization, in the sense of the QR decomposition1, 413 

where resulting ܵ is a lower triangular matrix. 414 

• Measurement update step 415 

During the measurement update step we propagate the cubature points through the measurement 416 

equation and estimate the predicted measurement: 417 

ࣳ,௧|௧ିଵ ൌ ൫ ࣲ,௧|௧ିଵ
௫ , ࣲ,௧|௧ିଵ

௨ , ࣲ,௧|௧ିଵ
ఏ ൯  ࣲ,௧ିଵ|௧ିଵ

ሺሻ , (19)

ො௧|௧ିଵݕ ൌ ଵ


∑ ࣳ,௧|௧ିଵ

ୀଵ . (20)

Subsequently, the square-root of the innovation covariance matrix ܵ௬௬,௧|௧ିଵ is estimated by using 418 

weighted and centered matrix ௧ܻ|௧ିଵ: 419 

ܵ௬௬,௧|௧ିଵ ൌ qr൫ ௧ܻ|௧ିଵ൯, (21)

௧ܻ|௧ିଵ ൌ ଵ
√

ൣ ଵࣳ,௧|௧ିଵ െ ,ො௧|௧ିଵݕ ࣳଶ,௧|௧ିଵ െ ,ො௧|௧ିଵݕ … , ࣳ,௧|௧ିଵ െ ො௧|௧ିଵ൧. (22)ݕ

This is followed by estimation of the cross-covariance ௫ܲ௬,௧|௧ିଵ matrix and Kalman gain ܭ௧: 420 

௫ܲ௬,௧|௧ିଵ ൌ ܺ௧|௧ିଵ ௧ܻ|௧ିଵ
் , (23)

௧ܭ ൌ ൫ ௫ܲ௬,௧|௧ିଵ/ܵ௬௬,௧|௧ିଵ
் ൯/ܵ௬௬,௧|௧ିଵ. (24)

The symbol / represents the matrix right divide operator; i.e. the operation ܤ/ܣ, applies the back 421 

substitution algorithm for an upper triangular matrix ܤ and the forward substitution algorithm for 422 

lower triangular matrix 423 .ܣ 

Finally, we estimate the updated state ݔො௧|௧ and the square-root factor of the corresponding error 424 

covariance: 425 

ො௧|௧ݔ ൌ ො௧|௧ିଵݔ  ௧ݕ௧൫ܭ െ ො௧|௧ିଵ൯, (25)ݕ

ܵ௧|௧ ൌ qrሺሾܺ௧|௧ିଵ െ ௧ܭ ௧ܻ|௧ିଵሿሻ. (26)

                                                      
1 The QR decomposition is a factorization of matrix ்ܺ into an orthogonal matrix Q and upper triangular matrix R 
such that ்ܺ ൌ ܴܳ, and ்ܺܺ ൌ ்்ܴܴܳܳ ൌ ்ܴܴ ൌ ்ܵܵ, where the resulting square-root (lower triangular) matrix 
is ܵ ൌ ்ܴ. 



The difference ݕ௧ െ  ො௧|௧ିଵ in Eq. (25) is called the innovation or the residual. It basically reflects 426ݕ

the difference between the actual measurement and predicted measurement (prediction error). 427 

Further, this innovation is weighted by Kalman gain, which minimizes the posterior error 428 

covariance.  429 

In order to improve convergence rates and tracking performance, during parameter 430 

estimation, a Robbins-Monro stochastic approximation scheme for estimating the innovations 431 

(Ljung and Söderström, 1983; Robbins and Monro, 1951) is employed. In our case, this involves 432 

approximation of square-root matrix of parameter noise covariance ܵ௪ by: 433 

ܵ௪ ൌ ටሺ1 െ ௪ሻܵ௪షభߣ
ଶ  ௧ݕ෩௧൫ܭ௪ߣ െ ௧ݕො௧|௧ିଵ൯൫ݕ െ ෩௧ܭො௧|௧ିଵ൯்ݕ

், (27)

where ܭ෩௧ is the partition of Kalman gain matrix corresponding to the parameter variables, and 434 

௪ߣ א ሺ0,1ሿ is scaling parameter usually chosen to be a small number (e.g. 10ିଷ). Moreover, we 435 

constrain ܵ௪ to be diagonal, which implies an independence assumption on the parameters. Van 436 

der Merwe (2004) showed that the Robbins-Monro method provides the fastest rate of 437 

convergence and lowest final MMSE values.  Additionally, we inject process noise artificially by 438 

annealing the square-root covariance of process noise with ܵ ൌ diagሺሺ1 ඥߣ െ 1⁄ ሻܵ௧ିଵ|௧ିଵ
௫ ሻ, 439 

using ߣ ൌ ߣ ,0.9995 א ሺ0,1ሿ (Arasaratnam and Haykin, 2008). 440 

Backward smoothing pass 441 

The following procedure is a backward pass, which can be used for computing the smoothed 442 

estimates of time step ݐ from estimates of time step ݐ  1. In other words, a separate backward 443 

pass is used for computing suitable corrections to the forward filtering results to obtain the 444 

smoothing solution ሺݔ௧, ଵ:்ሻݕ ൌ ࣨ൫ݔො௧|்|ݔො௧|்
௦ , ௧ܲ|்

௦ ൯ . Because the smoothing and filtering 445 

estimates of the last time step ܶ are the same, we make ݔො்|்
௦ ൌ ்|்ܵ ,்|ො்ݔ

௦ ൌ ்ܵ|். This means the 446 

recursion can be used for computing the smoothing estimates of all time steps by starting from 447 

the last step ݐ ൌ ܶ and proceeding backward to the initial step ݐ ൌ 0. To accomplish this, all 448 

estimates of ݔො:் and ܵ:்  from the forward pass have to be stored and are then called at the 449 

beginning of each time step of backward pass (28,29). 450 

• Square-root cubature RTS smoother 451 



Each time step of the smoother is initialized by forming an augmented state vector ݔො௧|௧
 and 452 

square-root covariance ܵ௧|௧
 , using estimates from the SCKF forward pass, ݔො௧|், ܵ௧|், and square-453 

roots covariance matrices of the noise components:  454 

ො௧|௧ݔ
 ൌ ்|ො௧ݔൣ

் , 0,0,0,0൧்
, (28)

ܵ௧|௧
 ൌ diag൛ܵ௧|், ܵ,், ܵ௩, ܵ௪,், ܵൟ. (29)

We then evaluate and propagate cubature points through nonlinear dynamic system (SDEs are 455 

integrated in forward fashion): 456 

ࣲ,௧|௧
 ൌ ܵ௧|௧

 ߦ  ො௧|௧ݔ
 , (30)

ࣲ,௧ାଵ|௧
௫,௨,ఏ ൌ ۴ ቀ ࣲ,௧|௧

ሺ௫ሻ, ࣲ,௧|௧
ሺ௨ሻ, ࣲ,௧|௧

ሺఏሻቁ  ࣲ,௧|௧
ሺ,௩,௪ሻ. (31)

We compute the predicted mean and corresponding square-root error covariance matrix: 457 

ො௧ାଵ|௧ݔ ൌ ଵ


∑ ࣲ,௧ାଵ|௧
௫,௨,ఏ

ୀଵ , (32)

ܵ௧ାଵ|௧ ൌ qrሺܺ௧ାଵ|௧ሻ, (33)

ܺ௧ାଵ|௧ ൌ
1

√݉
ൣ ଵࣲ,௧ାଵ|௧

௫,௨,ఏ െ ,ො௧ାଵ|௧ݔ ଶࣲ,௧ାଵ|௧
௫,௨,ఏ െ ,ො௧ାଵ|௧ݔ … , ࣲ,௧ାଵ|்

௫,௨,ఏ െ ො௧ାଵ|௧൧. (34)ݔ

Next, we compute the predicted cross-covariance matrix, where the weighted and centered 458 

matrix ܺ௧|௧
ᇱ  is obtained by using the partition ሺݔ, ,ݑ ሻ of augmented cubature point matrix ࣲ,௧|௧ߠ

  459 

and the estimated mean ݔො௧|௧
  before it propagates through nonlinear dynamic system (i.e. the 460 

estimate from forward pass): 461 

ܲ௫ᇲ௫,௧ାଵ|௧ ൌ ܺ௧|௧
ᇱ ܺ௧ାଵ|௧

் , (35)

ܺ௧|௧
ᇱ ൌ ଵ

√
ቂ ଵࣲ,௧|௧

ሺ௫,௨,ఏሻ െ ො௧|௧ݔ
ሺ௫,௨,ఏሻ, ଶࣲ,௧|௧

ሺ௫,௨,ఏሻ െ ො௧|௧ݔ
ሺ௫,௨,ఏሻ, … , ࣲ,௧|்

ሺ௫,௨,ఏሻ െ ො௧|௧ݔ
ሺ௫,௨,ఏሻቃ. (36)

Finally, we estimate the smoother gain ܣ௧ , the smoothed mean ݔො௧|்
௦  and the square-root 462 

covariance ܵ௧|்
௦ : 463 

௧ܣ ൌ ൫ܲ௫ᇲ௫,௧ାଵ|௧/ܵ௧ାଵ|௧
் ൯/ܵ௧ାଵ|௧, (37)

்|ො௧ݔ
௦ ൌ ො௧|௧ݔ

ሺ௨,௫,ఏሻ  ்|ො௧ାଵݔ௧൫ܣ
௦ െ ො௧ାଵ|௧൯, (38)ݔ



ܵ௧|்
௦ ൌ qrሺሾܺ௧|௧

ᇱ െ , ௧ܺ௧ାଵ|௧ܣ ்|௧ܵ௧ାଵܣ 
௦ ሿሻ. (39)

Note that resulting error covariance ܵ௧|்
௦  will be smaller than ܵ௧|௧ from the forward run, as the 464 

uncertainty over the state prediction is smaller when conditioned on all observations, than when 465 

only conditioned on past observations. 466 

This concludes our description of the estimation procedure, which can be summarized in the 467 

following steps:  468 

1) Evaluate the forward pass of the SCKF, where the continuous dynamic system of process 469 

equations is discretized by an LL-scheme for all cubature points. Note that both time update 470 

and measurement update steps are evaluated with an integration step ∆ݐ, and we linearly 471 

interpolate between available observation values. In this case, we weight all noise 472 

covariances by √∆ݐ . In each time step of the filter evaluation we obtain predicted 473 

൛ݔො௧|௧ିଵ, ,ො௧|௧ିଵݑ ,ො௧|௧ݔ௧|௧ିଵൟ and filtered ൛ߠ ,ො௧|௧ݑ  ௧|௧ൟ estimates of the states, parameters and the 474ߠ

inputs. These predicted estimates are used to estimate prediction errors ݁௧ ൌ ௧ݕ െ  ො௧, which 475ݕ

allows us to calculate the log-likelihood of the model given the data as: 476 

log ሻߠ|்:ଵݕሺ ൌ െ
ܶ
2 logሺ2ߨሻ െ

ܶ
2  ቈlogหܵ௬௬,௧|௧ିଵܵ௬௬,௧|௧ିଵ

் ห 
݁௧݁௧

்

ܵ௬௬,௧|௧ିଵܵ௬௬,௧|௧ିଵ
் 

்

௧ୀଵ

. (40)

2) Evaluate the backward pass of the SCKS to obtain smoothed estimates of the states ݔො௧|்
௦ , the 477 

input ݑො௧|்
௦ , and the parameters ߠ௧|்

௦ . Again, this operation involves discretization of the 478 

process equations by the LL-scheme for all cubature points. 479 

3) Iterate until the stopping condition is met. We evaluate log-likelihood (40) at each iteration 480 

and terminate the optimization when the increase of the (negative) log-likelihood is less than 481 

a tolerance value of e.g. 10ିଷ.  482 

Before we turn to the simulations, we provide with a brief description of DEM, which is used for 483 

comparative evaluations. 484 

Dynamic expectation maximization 485 



DEM is based on variational Bayes, which is a generic approach to model inversion (Friston 486 

et al., 2008). Briefly, it approximates the conditional density ሺݕ|ߴ, ݉ሻ  on some model 487 

parameters, ߴ ൌ ሼݔ, ,ݑ ,ߠ  and it also provides lower-bound on 488 ,ݕ ሽ, given a model ݉, and dataߟ

the evidence  ሺݕ|݉ሻ of the model itself. In addition, DEM assumes a continuous dynamic 489 

system formulated in generalized coordinates of motion, where some parameters change with 490 

time, i.e. hidden states ݔ and input ݑ, and rest of the parameters are time-invariant. The state-491 

space model has the form: 492 

ݕ ൌ ,ݔሺ ,ݑ ሻߠ  ݎ̃
ݔܦ ൌ ,ݔሚሺ ,ݑ ሻߠ  ,ݍ

 (41)

where 493 

 ൌ ൦

݃ ൌ ,ݔሺ ,ݑ ሻߠ
݃ᇱ ൌ ݃௫ݔᇱ  ݃௨ݑᇱ

݃ᇱᇱ ൌ ݃௫ݔᇱᇱ  ݃௨ݑᇱᇱ

ڭ

൪ , ሚ ൌ ൦

݂ ൌ ,ݔሺ ,ݑ ሻߠ
݂ᇱ ൌ ௫݂ݔᇱ  ௨݂ݑᇱ

݂ᇱᇱ ൌ ௫݂ݔᇱᇱ  ௨݂ݑᇱᇱ

ڭ

൪. (42)

Here,    and ሚ are the predicted response and motion of the hidden states, respectively. ܦ  is 494 

derivative operator whose first leading diagonal contains identity matrices, and which links 495 

successive temporal derivatives (ݔᇱ, ,ᇱᇱݔ … ; ,ᇱݑ ,ᇱᇱݑ …). These temporal derivatives are directly 496 

related to the embedding orders2 that one can specify separately for input (d) and for states (n) a 497 

priori. We will use embedding orders ݀ ൌ 3 and ݊ ൌ 6. 498 

DEM is formulated for the inversion of hierarchical dynamic causal models with (empirical) 499 

Gaussian prior densities on the unknown parameters of generative model m. These parameters 500 

are ሼߠ, ߟ represents set of model parameters and ߠ ሽ, whereߟ ൌ ሼߙ, ,ߚ  ሽ are hyperparameters, 501ߪ

which specify the amplitude of random fluctuations in the generative process. These 502 

hyperparameters correspond to (log) precisions (inverse variances) on the state noise (ߙ), the 503 

input noise (ߚ), and the measurement noise (ߪ), respectively. In contrast to standard Bayesian 504 

filters, DEM also allows for temporal correlations among innovations, which is parameterized by 505 

additional hyperparameter ߛ called temporal precision. 506 

                                                      
2 The term “embedding order” is used in analogy with lags in autoregressive modeling. 



DEM comprises three steps that optimize states, parameters and hyperparameters 507 

receptively: The first is the D-step, which evaluates Eq. (41), for the posterior mean, using the 508 

LL-scheme for integration of SDEs. Crucially, DEM (and its generalizations) does not use a 509 

recursive Bayesian scheme but tries to optimize the posterior moments of hidden states (and 510 

inputs) through an generalized (“instantaneous”) gradient ascent on (free-energy bound on) the 511 

marginal likelihood.  This generalized ascent rests on using the generalized motion (time 512 

derivatives to high order) of variables as part of the model generating or predicting discrete data. 513 

This means that DEM is a formally simpler (although numerically more demanding) than 514 

recursive schemes and only requires a single pass though the time-series to estimate the states. 515 

DEM comprises additional E (expectation) and M (maximization) steps that optimize the 516 

conditional density on parameters and hyperparameters (precisions) after the D (deconvolution) 517 

step. Iteration of these steps proceeds until convergence. For an exhaustive description of DEM, 518 

see (Friston et al., 2008). A key difference between DEM (variational and generalized filtering) 519 

and SCKS is that the states and parameters are optimized with respect to (a free-energy bound 520 

on) the log-evidence or marginal likelihood, having integrated out dependency on the 521 

parameters. In contrast, SCKS optimizes the parameters with respect to the log-likelihood in 522 

Equation (40), to provide maximum likelihood estimates of the parameters, as opposed to 523 

maximum a posteriori (MAP) estimators. This reflects the fact that DEM uses shrinkage priors 524 

on the parameters and hyperparameters, whereas SCKS does not. SCKS places priors on the 525 

parameter noise that encodes our prior belief that they do not change (substantially) over time.  526 

This is effectively a constraint on the volatility of the parameters (not their values per se), which 527 

allows the parameters to ‘drift’ slowly to their maximum likelihood value. This difference 528 

becomes important when evaluating one scheme in relation to the other, because we would 529 

expect some shrinkage in the DEM estimates to the prior mean, which we would not expect in 530 

the SCKS estimates (see next section). 531 

DEM rests on a mean-field assumption used in variational Bayes; in other words, it assumes 532 

that the states, parameters and hyperparameters are conditionally independent. This assumption 533 

can be relaxed by absorbing the parameters and hyperparameters into the states as in SCKS. The 534 

resulting scheme is called generalized filtering (Friston et al., 2010). Although generalized 535 

filtering is formally more similar to SCKS than DEM (and is generally more accurate), we have 536 



chosen to use DEM in our comparative evaluations because DEM has been validated against 537 

EKF and particle filtering (whereas generalized filtering has not). Furthermore, generalized 538 

filtering uses prior constraints on both the parameters and how fast they can change. In contrast, 539 

SCKS and DEM only use one set of constraints on the change and value of the parameters, 540 

respectively. However, we hope to perform this comparative evaluation in a subsequent paper; 541 

where we will consider Bayesian formulations of cubature smoothing in greater detail and relate 542 

its constraints on changes in parameters to the priors used in generalized filtering. 543 

Finally, for simplicity, we assume that the schemes have access to all the noise (precision) 544 

hyperparameters, meaning that they are not estimated. In fact, for SCKS we assume only the 545 

precision of measurement noise to be known and update the assumed values of the 546 

hyperparameters for fluctuations in hidden states and input during the inversion (see Eq. 27). We 547 

can do this because we have an explicit representation of the errors on the hidden states and 548 

input. 549 

Inversion of dynamic models by SCKF and SCKS 550 

In this section, we establish the validity and accuracy of the SCKF and SCKS scheme in 551 

relation to DEM. For this purpose, we analyze several nonlinear and linear continuous stochastic 552 

systems that were previously used for validating of DEM, where its better performance was 553 

demonstrated in relation to the EKF and particle filtering. In particular, we consider the well 554 

known Lorenz attractor, a model of a double well potential, a linear convolution model and, 555 

finally, we devote special attention to the inversion of a hemodynamic model. Even though some 556 

of these models might seem irrelevant for hemodynamic and neuronal modeling, they are 557 

popular for testing the effectiveness of inversion schemes and also (maybe surprisingly) exhibit 558 

behaviors that can be seen in models used in neuroimaging. 559 

To assess the performance of the various schemes, we perform Monte Carlo simulations, 560 

separately for each of these models; where the performance metric for the statistical efficiency of 561 

the estimators was the squared error loss function (SEL). For example, we define the SEL for 562 

states as: 563 



ሻݔሺܮܧܵ ൌ ሺݔ௧ െ ො௧ሻଶݔ
்

௧ୀଵ

. (43)

Similarly, we evaluate SEL for the input and parameters (when appropriate). Since the SEL is 564 

sensitive to outliers; i.e. when summing over a set of ሺݔ௧ െ  ො௧ሻଶ, the final sum tends to be biased 565ݔ

by a few large values. We consider this a convenient property when comparing the accuracy of 566 

our cubature schemes and DEM. Furthermore, this measure of accuracy accommodates the 567 

different constraints on the parameters in DEM (shrinkage priors on the parameters) and SCKS 568 

(shrinkage priors on changes in the parameters). We report the SEL values in natural logarithmic 569 

space; i.e. log(SEL). 570 

Note that all data based on the above models were simulated through the generation function 571 

in the DEM toolbox (spm_DEM_generate.m) that is available as part of SPM8 572 

(http://www.fil.ion.ucl.ac.uk/spm/). 573 

Table 1. State and observation equations for dynamic systems.  574 
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 575 

Table 2. Parameters of the generative model for the simulated dynamic systems. 576 

  Lorenz  Double-well Convolution  Hemodynamic  
Observation-noise precision Simulated ߪ ൌ ߪ 1 ൌ ݁ଶ ߪ ൌ ߪ ଼݁ ൌ ݁ 

Prior pdf  ࣨሺ0,1ሻ  ࣨሺ0, ݁ିଶሻ  ࣨሺ0, ݁ି଼ሻ  ࣨሺ0, ݁ିሻ 

State-noise precision Simulated ߙ ൌ ݁ଵ ߙ ൌ ݁ଵ ߙ ൌ ݁ଵଶ ߙ ൌ ଼݁ 

Input-noise precision Simulated - ߚ ൌ భ
ఴ  ߚ ൌ ݁ଵ ߚ ൌ ଼݁ 



Prior pdf -  ࣨሺ0,1ሻ  ࣨሺ0,0.1ሻ  ࣨሺ0,0.1ሻ 

Parameter-noise precision Prior pdf 3  ࣨሺ0,0.1ሻ -  ࣨሺ0, 10ିସሻ Tab. 3 

Initial conditions Simulated ݔ ൌ ሾ0.9,0.8,30ሿ் ݔ ൌ ݔ 1 ൌ ሾ0,0ሿ் ݔ ൌ ሾ0,0,0,0ሿ் 

 577 

Lorenz attractor 578 

The model of the Lorenz attractor exhibits deterministic chaos, where the path of the hidden 579 

states diverges exponentially on a butterfly-shaped strange attractor in a three dimensional state-580 

space. There are no inputs in this system; the dynamics are autonomous, being generated by 581 

nonlinear interactions among the states and their motion. The path begins by spiraling onto one 582 

wing and then jumps to the other and back in chaotic way. We consider the output to be the 583 

simple sum of all three states at any time point, with innovations of unit precision ߪ ൌ 1 and 584 

ߛ ൌ 8. We further specified a small amount of the state noise (ߙ ൌ ݁ଵ). We generated 120 time 585 

samples using this model, with initial state conditions ݔ ൌ ሾ0.9, 0.8, 30ሿ் , parameters ߠ ൌ586 

 ሾ18, െ4, 46.92ሿ் and an LL-integration step ∆ݐ ൌ 1. 587 

This sort of chaotic system shows sensitivity to initial conditions; which, in the case of 588 

unknown initial conditions, is a challenge for any inversion scheme. Therefore, we first compare 589 

SCKF, SCKS and DEM when the initial conditions ݔ differ from the true starting values, with 590 

known model parameters. This simulation was repeated five times with random initializations 591 

and different innovations. Since we do not estimate any parameters, only a single iteration of the 592 

optimization process is required. We summarized the resulting estimates in terms of the first two 593 

hidden states and plotted their trajectories against each other in their corresponding state-space 594 

(Fig. 1A). It can be seen that all three inversion schemes converge quickly to the true trajectories. 595 

DEM provides the least accurate estimate (but still exhibits high performance when compared to 596 

EKF and particle filters  (Friston, 2008a; Friston et al., 2008)). The SCKF was able to track the 597 

true trajectories more closely. This accuracy is even more improved by SCKS, where the initial 598 

residuals are significantly smaller, hence providing the fastest convergence. 599 

                                                      
3 Prior precision on parameter noise is used for initialization and during CKF step the parameter noise variance is 
estimated by Robbins-Monro stochastic approximation (27) with scaling parameter ߣ௪ ൌ 10ିଶ  for the Lorenz 
attractor and ߣ௪ ൌ 10ିଷ for the convolution and hemodynamic models. 



Next, we turned to testing the inversion schemes when both initial conditions and model 600 

parameters are unknown. We used initial state conditions ݔ ൌ ሾ2, 8, 22ሿ்  and parameters 601 

ߠ ൌ  ሾ10, െ8, 43ሿ், where their true values were the same as above. We further assumed an 602 

initial prior precision on parameter noise ሺߠሻ ൌ ࣨሺ0,0.1ሻ, and allowed the algorithm to iterate 603 

until the convergence. The SCKF and SCKS converged in 6 iteration steps, providing very 604 

accurate estimates of both states and parameters (Fig. 1B). This was not the case for DEM, 605 

which did not converge, exceeding the maximum allowed number of iteration, 50.  606 

The reason for DEM’s failure is that the updates to the parameters are not properly 607 

regularized in relation to their highly nonlinear impact on the trajectories of hidden states. In 608 

other words, DEM makes poor updates, which are insensitive to the highly nonlinear form of this 609 

model. Critically, SCKF and SCKS outperformed DEM because it uses an online parameter 610 

update scheme and were able to accommodate nonlinearities much more gracefully, through its 611 

cubature-point sampling. Heuristically, cubature filtering (smoothing) can be thought of as 612 

accommodating nonlinearities by relaxing the strong assumptions about the form of the 613 

likelihood functions used in optimizing estimates. DEM assume this form is Gaussian and 614 

therefore estimates its local curvature with second derivatives. A Gaussian form will be exact for 615 

linear models but not non-linear models. Conversely, cubature filtering samples this function 616 

over greater distances in state or parameter space and relies less on linear approximations 617 

 618 



 619 

Figure 1. (A) The Lorenz attractor simulations were repeated five times, using different starting conditions (dots) 620 
and different random innovations. The hidden states of this model were estimated using DEM, SCKF and SCKS. 621 
Here, we summarize the resulting trajectories in terms of the first two hidden states, plotted against each other in 622 
their corresponding state-space. The true trajectories are shown on the upper left . (B) The inversion of Lorenz 623 
system by SCKF, SCKS and DEM. The true trajectories are shown as dashed lines, DEM estimates with dotted 624 
lines, and SCKF and SCKS estimates with solid lines including the 90% posterior confidence intervals (shaded 625 
areas). (C) Given the close similarity between the responses predicted by DEM and SCKS, we show only the result 626 
for SCKS. (D) The parameters estimates are summarized in lower left in terms of their expectation and 90% 627 
confidence intervals (red lines). Here we can see that DEM is unable to estimate the model parameters. 628 



• MC simulations: To verify this result, we conducted a series of 100 Monte Carlo 629 

simulations under three different estimation scenarios. In the 1st scenario, we considered 630 

unknown initial conditions of hidden states but known model parameters. The initial conditions 631 

were sampled randomly from uniform distribution ݔ ~ ࣯ሺ0,20ሻ, and the true values were the 632 

same as in all previous cases. In the 2nd scenario, the initial states were known but the model 633 

parameters unknown, being sampled from the normal distribution around the true values 634 

,௧௨ߠ ~ ࣨሺߠ 10ሻ. Finally, the 3rd scenario was combination of the first two; with both initial 635 

conditions and parameters unknown. In this case, the states were always initialized with ݔ ൌ636 

ሾ2, 8, 22ሿ் and parameters sampled from the normal distribution. Results, in terms of average 637 

log(SEL), comparing the performance of SCKS and DEM are shown in Fig. 4. 638 

Double-well 639 

The double-well model represents a dissipative system with bimodal variability. What 640 

makes this system particularly difficult to invert for many schemes is the quadratic form of the 641 

observation function, which renders inference on the hidden states and their causes ambiguous. 642 

The hidden state is deployed symmetrically about zero in a double-well potential, which makes 643 

the inversion problem even more difficult. Transitions from one well to other can be then caused 644 

either by input or high amplitude fluctuations. We drove this system with slow sinusoidal input 645 

ሻݐሺݑ ൌ 8 ڄ sin ቀ ଵ
ଵ

ߪ ቁ and generated 120 time points response with noise precisionݐߨ ൌ ݁ଶ, a 646 

small amount of state noise ߙ ൌ ݁ଵ, and with a reasonable level of input noise ߚ ൌ 1 8⁄ . The 647 

temporal precision was ߛ ൌ 2  and LL-integration step again ∆ݐ ൌ 1 , with initial condition 648 

ݔ ൌ 1, and mildly informative (initial) prior on the input precision ሺݑሻ ൌ ࣨሺ0,1ሻ. We tried to 649 

invert this model using only observed responses by applying SCKF, SCKS and DEM. Fig. 2 650 

shows that DEM failed to estimate the true trajectory of the hidden state, in the sense that the 651 

state is always positive. This had an adverse effect on the estimated input and is largely because 652 

of the ambiguity induced by the observation function. Critically, the accuracy of the input 653 

estimate will be always lower than that of the state, because the input is expressed in 654 

measurement space vicariously through the hidden states. Nevertheless, SCKF and SCKS were 655 

able to identify this model correctly, furnishing accurate estimates for both the state and the 656 

input, even though this model represents a non-Gaussian (bimodal) problem (Fig. 2). 657 



 658 
Figure 2. Inversion of the double-well model, comparing estimates of the hidden state and input from SCKF, SCKS 659 
and DEM. This figure uses the same format as Fig. 1B,C. Again, the true trajectories are depicted with dashed lines 660 
and the shaded area represents 90% posterior confidence intervals. Given the close similarity between the responses 661 
predicted by DEM and SCKS, we show only the result for SCKS. 662 

• MC simulations: To evaluate the stability of SCKS estimates in this context, we repeated 663 

the simulations 100 times, using different innovations. It can be seen from the results in Fig. 4 664 

that the SCKS estimates of the state and input are about twice as close to the true trajectories 665 

than the DEM estimates. Nevertheless, the SCKS was only able to track the true trajectories of 666 



the state and input completely (as shown in Fig 3.) in about 70% of all simulations. In remaining 667 

30% SCKS provided results where some half-periods of hidden state trajectories had the wrong 668 

sign; i.e. flipped around zero. At the present time, we have no real insight into why DEM fails 669 

consistently to cross from positive to negative conditional estimates, while the SCKS scheme 670 

appears to be able to do this. One might presume this is a reflection of cubature filtering's ability 671 

to handle the nonlinearities manifest at zero crossings. The reason this is a difficult problem is 672 

that the true posterior density over the hidden state is bimodal (with peaks at positive and 673 

negative values of hidden state). However, the inversion schemes assume the posterior is a 674 

unimodal Gaussian density, which is clearly inappropriate. DEM was not able to recover the true 675 

trajectory of the input for any simulation, which suggests that the cubature-point sampling in 676 

SCKS was able to partly compensate for the divergence between the true (bimodal) and assumed 677 

unimodal posterior. 678 

 679 
Convolution model 680 

The linear convolution model represents another example that was used in (Friston, 2008a; 681 

Friston et al., 2008) to compare DEM, EKF, particle filtering and variational filtering. In this 682 

model (see Tab. 1), the input perturbs hidden states, which decay exponentially to produce an 683 

output that is a linear mixture of hidden states. Specifically, we used the input specified by 684 

Gaussian bump function of the form ݑሺݐሻ ൌ  exp ሺభ
ర
ሺݐ െ 12ሻଶሻ, two hidden states and four output 685 

responses. This is a single input-multiple output system with the following parameters: 686 

ଵߠ ൌ ൦

0.125 0.1633
0.125 0.0676
0.125 െ0.0676
0.125 െ0.1633

൪, ߠଶ ൌ ቂെ0.25 1.00
െ0.50 െ0.25ቃ, ߠଷ ൌ ቂ1

0ቃ. 687 

We generated data over 32 time points, using innovations sampled from Gaussian densities 688 

with precision ߪ ൌ ଼݁, a small amount of state noise ߙ ൌ ݁ଵଶ and minimal input noise ߚ ൌ ݁ଵ. 689 

The  LL-integration step was ∆ݐ ൌ 1 and temporal precision ߛ ൌ 4. During model inversion, the 690 

input and four model parameters are unknown and are subject to mildly informative prior 691 

precisions, ሺݑሻ ൌ ࣨሺ0,0.1ሻ , and ሺߠሻ ൌ ࣨሺ0, 10ିସሻ , respectively. Before initializing the 692 

inversion process, we set parameters ߠଵሺ1,1ሻ; ߠଵሺ2,1ሻ; ߠଶሺ1,2ሻ; and ߠଶሺ2,2ሻ  to zero. Fig. 3, 693 

shows that applying only a forward pass with SCKF does not recover the first hidden state and 694 



especially the input correctly. The situation is improved with the smoothed estimates from 695 

SCKS, when both hidden states match the true trajectories. Nevertheless, the input estimate is 696 

still slightly delayed in relation to the true input. We have observed this delay repeatedly, when 697 

inverting this particular convolution model with SCKS. The input estimate provided by DEM is, 698 

in this case, correct, although there are more perturbations around the baseline compared to the 699 

input estimated by SCKS. The reason that DEM was able to track the input more accurately is 700 

that is has access to generalized motion. Effectively this means it sees the future data in a way 701 

that recursive update schemes (like SCKF) do not. This becomes important when dealing with 702 

systems based on high-order differential equations, where changes in a hidden state or input are 703 

expressed in terms of high-order temporal derivatives in data space (we will return to this issue 704 

later). Having said this, the SCKS identified the unknown parameters more accurately than 705 

DEM, resulting in better estimates of hidden states. 706 

 707 



 708 

Figure 3. Results of inverting the linear convolution model using SCKF, SCKS and DEM; summarizing estimates 709 
of hidden states, input, four model parameters and the response. This figure uses the same format as Fig. 1B,C,D. 710 

• MC simulations: For Monte Carlo simulation we looked at two different scenarios. First, 711 

we inverted the model when treating only the input as unknown, and repeated the simulations 712 

100 times with different innovations. In the second scenario, which was also repeated 100 times 713 

with different innovations, both input and the four model parameters were treated as unknown. 714 

The values of these parameters were sampled from the normal distribution ߠ ൌ ࣨሺ0,1ሻ. Fig. 4, 715 



shows that DEM provides slightly more accurate estimates of the input than SCKS. This is 716 

mainly because of the delay issue above. However, SCKS again furnishes more accurate 717 

estimates, with a higher precision on inverted states and markedly higher accuracy on the 718 

identified model parameters. 719 

 720 

 721 

Figure 4. The Monte Carlo evaluation of estimation accuracy using an average log(SEL) measure for all models 722 
under different scenarios. The SEL measure is sensitive to outliers, which enables convenient comparison between 723 
different algorithms tested on the same system. However, it cannot be used to compare performance among different 724 
systems. A smaller log(SEL) value reflects a more accurate estimate. For quantitative intuition, a value of 725 
log(SEL)ൌ െ is equivalent to mean square error (MSE) of about  · ି and a log(SEL) ൌ ૠ is a MSE of about 726 
ૠ · .  727 

  728 

Hemodynamic model 729 

The hemodynamic model represents a nonlinear “convolution” model that was described 730 

extensively in (Buxton et al., 1998; Friston et al., 2000). The basic kinetics can be summarized as 731 

follows: Neural activity ݑ causes an increase in vasodilatory signal ݄ଵ that is subject to auto-732 



regulatory feedback. Blood flow ݄ଶ responds in proportion to this signal and causes changes in 733 

blood volume ݄ଷ and deoxyhemoglobin content, ݄ସ. These dynamics are modeled by a set of 734 

differential equations and the observed response is expressed as a nonlinear function of blood 735 

volume and deoxyhemoglobin content (see Tab. 1). In this model, the outflow is related to the 736 

blood volume ܨሺ݄ଷሻ ൌ ݄ଷ
ଵ ఈ⁄  through Grubb’s exponent ߙ . The relative oxygen extraction 737 

ሺ݄ଶሻܧ ൌ ଵ
ఝ

൫1 െ ሺ1 െ ߮ሻଵ మ⁄ ൯  is a function of flow, where ߮  is a resting oxygen extraction 738 

fraction. The description of model parameters, including the prior noise precisions is provided in 739 

Tab. 3. 740 

Table 3. Hemodynamic model parameters.  741 
Biophysical parameters of the state equations 

 Description Value Prior on noise variance 
ሻߠሺ Rate of signal decay 0.65 s-1 ߢ ൌ ࣨሺ0, 10ିସሻ 

߯ Rate of flow-dependent elimination 0.38 s-1 ൫ߠఞ൯ ൌ ࣨሺ0, 10ିସሻ 

߬ Hemodynamic transit time 0.98 s ሺߠఛሻ ൌ ࣨሺ0, 10ିସሻ 

ఈሻߠሺ Grubb’s exponent 0.34 ߙ ൌ ࣨሺ0, 10ି଼ሻ 

߮ Resting oxygen extraction fraction 0.32 ൫ߠఝ൯ ൌ ࣨሺ0, 10ି଼ሻ 

߳ Neuronal efficiency  0.54 ሺߠఢሻ ൌ ࣨሺ0, 10ି଼ሻ 

    

Fixed biophysical parameters of the observation equation 

 Description Value  

ܸ Blood volume fraction 0.04  

݇ଵ Intravascular coefficient 7߮  

݇ଶ Concentration coefficient 2  

݇ଷ Extravascular coefficient 2߮-0.2  

 742 

In order to ensure positive values of the hemodynamic states and improve numerical 743 

stability of the parameter estimation, the hidden states are transformed ݔ ൌ logሺ݄ሻ ֞ ݄ ൌ744 

exp ሺݔሻ. However, before evaluating the observation equation, the log-hemodynamic states are 745 

exponentiated. The reader is referred to (Friston et al., 2008; Stephan et al., 2008) for a more 746 

detailed explanation.  747 



Although there are many practical ways to use the hemodynamic model with fMRI data, we 748 

will focus here on its simplest instance; a single-input, single-output variant. We will try to 749 

estimate the hidden states and input though model inversion, and simultaneously identify model 750 

parameters from the observed response. For this purpose, we generated data over 60 time points 751 

using the hemodynamic model, with an input in the form of a Gaussian bump functions with 752 

different amplitudes centered at positions (10; 15; 39; and 48), and model parameters as reported 753 

in Tab. 2. The sampling interval or repeat time (TR) was equal to TR = 1 sec. We added 754 

innovations to the output with a precision ߪ ൌ ݁. This corresponds to a noise variance of about 755 

0.0025, i.e. in range of observation noise previously estimated in real fMRI data (Johnston et al., 756 

2008; Riera et al., 2004), with a temporal precision ߛ ൌ 1. The precision of state noise was 757 

ߙ ൌ ଼݁ and precision of the input noise ߚ ൌ ଼݁. At the beginning of the model inversion, the true 758 

initial states were ݔ ൌ ሾ0,0,0,0ሿ். Three of the six model parameters, specifically ߠ ൌ ሼߢ, ߯, ߬ሽ, 759 

were initialized randomly, sampling from the normal distribution centered on the mean of the 760 

true values ߠ ൌ ࣨሺߠ
௧௨, 1 12⁄ ሻ. The remaining parameters were based on their true values. 761 

The reasons for omitting other parameters from random initializations will be discussed later in 762 

the context of parameter identifiability. The prior precision of parameter noise are given in Tab. 763 

3, where we allowed a small noise variance (10-8) in the parameters that we considered to be 764 

known ሼߙ, ߮, ߳ሽ; i.e. these parameters can only experience very small changes during estimation. 765 

The parameter priors for DEM were as reported in (Friston et al., 2010) with the exception of 766 

ሼߙ, ߮ሽ, which we fixed to their true values. 767 

For model inversion we considered two scenarios that differed in the size of the integration 768 

step. First, we applied an LL-integration step of Δݐ ൌ 0.5; in the second scenario, we decreased 769 

the step to Δݐ ൌ 0.2. Note that all noise precisions are scaled by √ Δݐ before estimation begins. 770 

The same integration steps were also used for DEM, where we additionally increased the 771 

embedding orders (݊ ൌ ݀ ൌ 8) to avoid numerical instabilities. The results are depicted in Fig. 5 772 

and 6. It is noticeable that in both scenarios neither the hidden states nor input can be estimated 773 

correctly by SCKF. For Δݐ ൌ 0.5, SCKS estimates the input less accurately than DEM, with 774 

inaccuracies in amplitude and in the decaying part of the Gaussian input function, compared to 775 

the true trajectory. This occurred even though the hidden states were tracked correctly. The 776 

situation is very different for Δt ൌ 0.2: Here the results obtained by SCKS are very precise for 777 



both the states and input. This means that a finer integration step had beneficial effects on both 778 

SCKF and SCKS estimators. In contrast, the DEM results did not improve. Here, including more 779 

integration steps between observation samples decreased the estimation accuracy for the input 780 

and the states. This means that DEM, which models high order motion, does not require the 781 

small integration steps necessary for SCKF and SCKS. Another interesting point can be made 782 

regarding parameter estimation. As we mentioned above, SCKS estimated the hidden states in 783 

both scenarios accurately, which might lead to the conclusion that the model parameters were 784 

also indentified correctly. However, although some parameters were indeed identified optimally 785 

(otherwise we would not obtain correct states) they were not equal to the true values. This is due 786 

to the fact that the effects of some parameters (on the output) are redundant, which means 787 

different sets of parameter values can provide veridical estimates of the states. For example, the 788 

effects of increasing the first parameter can be compensated by decreasing the second, to 789 

produce exactly the same output. This feature of the hemodynamic model has been discussed 790 

before in (Deneux and Faugeras, 2006) and is closely related to identifiably issues and 791 

conditional dependence among parameters estimates. 792 



 793 

Figure 5. Results of the hemodynamic model inversion by SCKF, SCKS and DEM, with an integration step of 794 
࢚∆ ൌ .  and the first three model parameters were identified. This figure uses the same format as Fig 1B,C,D. 795 



 796 

Figure 6. Results of the hemodynamic model inversion by SCKF, SCKS and DEM, with an integration step of 797 
࢚∆ ൌ .  and the first three model parameters were identified. This figure uses the same format as Fig 1B,C,D. 798 

• MC simulations: We examined three different scenarios for the hemodynamic model 799 

inversion. The simulations were inverted using an integration step Δݐ ൌ 0.2 for SCKF and SCKS 800 

and Δݐ ൌ 0.5 for DEM. First, we focus on performance when the input is unknown, we have 801 

access to the true (fixed) parameters and the initial states are unknown. These were sampled 802 

randomly from the uniform distribution ݔ ~ ࣯ሺ0,0.5ሻ. In the second scenario, the input is again 803 



unknown, and instead of unknown initial conditions we treated three model parameters ߠ ൌ804 

ሼߢ, ߯, ߬ሽ as unknown. Finally in the last scenario, all three variables (i.e. the initial conditions, 805 

input, and three parameters) are unknown. All three simulations were repeated 100 times with 806 

different initializations of ݔ, ߠ, innovations, and state and input noise. From the MC simulation 807 

results, the following interesting behaviors were observed. Since the DEM estimates are 808 

calculated only in a forward manner, if the initial states are incorrect, it takes a finite amount of 809 

time before they converge to their true trajectories. This error persists over subsequent iterations 810 

of the scheme (E-steps) because they are initialized with the same incorrect state. This problem is 811 

finessed with SCKS: Although the error will be present in the SCKF estimates of the first 812 

iteration, it is efficiently corrected during the smoothing by SCKS, which brings the initial 813 

conditions closer to their true values. This enables an effective minimization of the initial error 814 

over iterations. This feature is very apparent from MC results in terms of log(SEL) for all three 815 

scenarios. When the true initial state conditions are known (2nd scenario), the accuracy of the 816 

input estimate is the same for SCKS and DEM, SCKS has only attained slightly better estimates 817 

of the states, hence also better parameter estimates. However, in the case of unknown initial 818 

conditions, SCKS is superior (see Fig 4). 819 

• Effect of model parameters on hemodynamic response and their estimation  820 

Although the biophysical properties of hemodynamic states and their parameters were 821 

described extensively in (Buxton et al., 1998; Friston et al., 2000), we will revisit the 822 

contribution of parameters to the final shape of hemodynamic response function (see Fig. 7A). In 823 

particular, our interest is in the parameters ߠ ൌ ሼߢ, ߯, ߬, ,ߙ ߮, ߳ሽ , which play a role in the 824 

hemodynamic state equations. We evaluated changes in hemodynamic responses over a wide 825 

range of parameters values (21 regularly spaced values for each parameter). In Fig. 7A, the red 826 

lines represent biologically plausible mean parameter values that were estimated empirically in 827 

(Friston et al., 2000), and which are considered to be the true values here (Tab. 3). The arrows 828 

show change in response when these parameters are increased. The first parameter is ߢ ൌ 1/߬௦, 829 

where ߬௦  is the time constant of signal decay. Increasing this parameter dampens the 830 

hemodynamic response to any input and suppresses its undershoot. The second parameter 831 

߯ ൌ 1/߬  is defined by the time constant of the auto-regulatory mechanism ߬ . The effect of 832 

increasing parameter ߯ (decreasing the feedback time constant ߬) is to increase the frequency of 833 



the response and lower its amplitude, with small change of the undershoot (see also the effect on 834 

the first hemodynamic state ݄ଵ ). The parameter ߬  is the mean transit time at rest, which 835 

determines the dynamics of the signal. Increasing this parameter slows down the hemodynamic 836 

response, with respect to flow changes. It also slightly reduces response amplitude and more 837 

markedly suppresses the undershoot. The next parameter is the stiffness or Grub’s exponent 838 ,ߙ 

which is closely related to the flow-volume relationship. Increasing this parameter increases the 839 

degree of nonlinearity of the hemodynamic response, resulting in decreases of the amplitude and 840 

weaker suppression of undershoot. Another parameter of hemodynamic model is resting oxygen 841 

extraction fraction ߮. Increasing this parameter can have quite profound effects on the shape of 842 

the hemodynamic response that bias it towards an early dip. This parameter has an interesting 843 

effect on the shape of the response: During the increase of ߮, we first see an increase of the 844 

response peak amplitude together with deepening of undershoot, whereas after the value passes 845 

߮ ൌ 0.51, the undershoot is suppressed. Response amplitude continues to grow until ߮ ൌ 0.64 846 

and falls rapidly after that. Additionally, the early dip starts to appear with ߮ ൌ 0.68 and higher 847 

values. The last parameter is the neuronal efficacy ߳, which simply modulates the hemodynamic 848 

response. Increasing this parameter scales the amplitude of the response. 849 

In terms of system identification, it has been shown in (Deneux and Faugeras, 2006) that 850 

very little accuracy is lost when values of Grub’s exponent and resting oxygen extraction fraction 851 

ሼߙ, ߮ሽ are fixed to some physiologically plausible values. This is in accordance with (Riera et al., 852 

2004), where these parameters were also fixed. Grub’s exponent is supposed to be stable during 853 

steady-state stimulation (Mandeville et al., 1999); ߙ ൌ 0.38 േ 0.1 with almost negligible effects 854 

on the response within this range. The resting oxygen extraction fraction parameter is responsible 855 

for the early dip that is rarely observed in fMRI data. Its other effects can be approximated by 856 

combining parameters ሼߢ, ߬ሽ. In our case, where the input is unknown, the neuronal efficiency 857 

parameter ߳ is fixed as well. This is necessary, because a change in this parameter is degenerate 858 

with respect to the amplitude of neuronal input. 859 

To pursue this issue of identifiably we examined the three remaining parameters ߠ ൌ860 

ሼߢ, ߯, ߬ሽ in terms of the (negative) log-likelihood for pairs of these three parameters; as estimated 861 

by the SCKS scheme (Fig. 7B). The curvature (Hessian) of this log-likelihood function is, in 862 

fact, the conditional precision (inverse covariance) used in variational schemes like DEM and is 863 



formally related to the Fisher Information matrix for the parameters in question. A slow 864 

curvature (shallow) basin means that we are conditionally uncertain about the precise value and 865 

that large changes in parameters will have relatively small effects on the observed response or 866 

output variables. The global optimum (true values) is marked by the green crosslet. To compute 867 

these log-likelihoods we ran SCKS for all combinations of parameters within their selected 868 

ranges, assuming the same noise precisions as in the hemodynamic simulations above (Tab. 3).  869 

Note that we did not perform any parameter estimation, but only evaluated log-likelihood for 870 

different parameter values, having optimized the states. Looking at the ensuing (color-coded) 871 

optimization manifolds, particularly at the white area bounded by the most inner contour, we can 872 

see how much these parameters can vary around the global optimum and still provide reasonably 873 

accurate predictions (of output, hidden states and input). This range is especially wide for the 874 

mean transient time ߬ . One can see from the plot at the top of Fig. 7A that changing ߬ ൌ875 

;0.3ۃ  over a wide range has little effect on the response. The region around the global 876 ۄ2.0

maximum also discloses conditional dependencies and redundancy among the parameters. These 877 

dependencies make parameter estimation a generally more difficult task.  878 

Nevertheless, we were curious if, at least under certain circumstances, the true parameter 879 

values could be estimated. Therefore, we allowed for faster dynamics on the parameters ሼߢ, ߯, ߬ሽ 880 

by using higher noise variances (4 · 10ିସ, 2· 10ିସ, 10ିଶ, respectively) and evaluated all three 881 

possible parameter combinations using SCKS. In other words, we optimized two parameters with 882 

the third fixed, over all combinations. These noise parameters were chosen after intensive 883 

testing, to establish the values that gave the best estimates. We repeated these inversions four 884 

times, with different initial parameter estimates selected within the manifolds shown in Fig. 7A. 885 

In Fig. 7B, we can see how the parameters moved on the optimization surface, where the black 886 

dashed line depicts the trajectory of the parameter estimates over successive iterations, starting 887 

from the initial conditions (black dot) and terminating around the global optimum (maximum). 888 

The red thick line represents the dynamic behavior of parameters over time during the last 889 

iteration. The last iteration estimate for all states, input and parameters is depicted in Fig. 7C. 890 

Here the dynamics of transit time (߬) is especially interesting; it drops with the arrival of the 891 

neuronal activation and is consequently restored during the resting period. This behavior is 892 

remarkably similar to that observed by Mandeville et al. (1999) in rat brains, where mean transit 893 

time falls during activation. Clearly, we are not suggesting that the transit time actually 894 



decreased during activation in our simulations (it was constant during the generation of data). 895 

However, these results speak to the interesting application of SCKS to identify time-dependent 896 

changes in parameters. This could be important when applied to dynamic causal models of 897 

adaptation or learning studies that entail changes in effective connectivity between neuronal 898 

populations. The key message here is that if one can (experimentally) separate the time scale of 899 

true changes in parameters from the (fast) fluctuations inherent in recursive Bayesian filtering (or 900 

generalized filtering), it might be possible to estimate (slow) changes in parameters that are of 901 

great experimental interest.  902 

In general, enforcing slow dynamics on the parameters (with a small noise variance) will 903 

ensure more accurate results for both states and input, provided the true parameters also change 904 

slowly. Moreover, we prefer to consider all parameters of hemodynamic state equations as 905 

unknown and limit their variations with high prior precisions. This allows us to treat all the 906 

unknown parameters uniformly; where certain (assumed) parameters can be fixed to their prior 907 

mean using an infinitely high prior precision. 908 



 909 

Figure 7. (A)The tops row depicts the effect of changing the hemodynamic model parameters on the response and 910 
on the first hidden state. For each parameter, the range of values considered is reported, comprising 21 values . (B) 911 
The middle row shows the optimization surfaces (manifolds) of negative log-likelihood obtained via SCKS for 912 



combinations of the first three hemodynamic model parameters ሼࣄ, ,࣑  ሽ. The trajectories of convergence (dashed 913࣎
lines) for four different parameter initializations (dots) are superimposed. The true values (at the global optima) are 914 
depicted by the green crosshair and the dynamics of the parameters over the final iteration correspond to the thick 915 
red line. (C) The bottom row shows the estimates of hidden states and input for the corresponding pairs of 916 
parameters obtained during the last iteration, where we also show the trajectory of the parameters estimates over 917 
time . 918 

• Beyond the limits of fMRI signal 919 

One of the challenges in fMRI research is to increase a speed of brain volume sampling; i.e. 920 

to obtain data with a higher temporal resolution. Higher temporal resolution allows one to 921 

characterize changes in the brain more accurately, which is important in many aspects of fMRI. 922 

In this section, we will show that estimating unobserved (hidden) hemodynamic states and, more 923 

importantly, the underlying neuronal drives solely from observed data by blind deconvolution 924 

can significantly improve the temporal resolution and provide estimates of the underlying 925 

neuronal dynamics at a finer temporal scale. This may have useful applications in the formation 926 

of things like psychophysiological interactions (Gitelman et al., 2003).  927 

In the hemodynamic model inversions above we did not use very realistic neuronal input, 928 

which was a Gaussian bump function and the data were generated with a temporal resolution of 1 929 

s. This was sufficient for our comparative evaluations; however in real data, the changes in 930 

underlying neuronal activation are much faster (possibly in the order of milliseconds) and may 931 

comprise a rapid succession of events. The hemodynamic changes induced by this neuronal 932 

activation manifest as a rather slow response, which peaks at about 4-6 s.  933 

To make our simulations more realistic, we considered the following generation process, 934 

which is very similar to the simulation and real data used previously in Riera et al. (2004). First, 935 

we generated our data with a time step of 50 ms using the sequence of neuronal events depicted 936 

at the top of Fig. 8. These Gaussian-shaped neuronal events (inputs) had a FWTM (full-width at 937 

tenth of maximum) of less than 200 ms. Otherwise, the precisions on innovations, states noise, 938 

and input noise were identical to the hemodynamic simulations above. Next we down-sampled 939 

the synthetic response with a realistic TR = 1.2 s, obtaining data of 34 time points from the 940 

original 800. For estimation, we used the same priors on the input ሺݑሻ ൌ ࣨሺ0,0.1ሻ  and 941 

parameters as summarized in Tab. 3. 942 



Our main motivation was the question: How much of the true underlying neuronal signal 943 

can we recover from this simulated sparse observation, when applying either SCKS or DEM? To 944 

answer this, two different scenarios were considered. The first used an integration step Δݐ ൌ945 

TR 2⁄ ൌ 0.6 s which had provided quite favorable results above. The top row of Fig. 8 shows the 946 

estimated input and states provided by SCKS and DEM. It can be seen that the states are traced 947 

very nicely by both approaches. For the input estimates, SCKS captures the true detailed 948 

neuronal structure deficiently, although the main envelope is correct. For DEM, the input 949 

estimate is much closer to the true structure of the neuronal signal, distinguishing all seven 950 

events. However, one can not overlook sharp undershoots that appear after the inputs. The reason 951 

for these artifacts rests on the use of generalized coordinates of motion, where the optimization 952 

of high order temporal derivatives does not always produce the optimal low order derivatives (as 953 

shown in the Fig. 8). 954 

In the second scenario, where we decreased the integration step to Δݐ ൌ TR 10⁄ ൌ 0.12 s, 955 

we see that the SCKS estimate of the input has improved markedly. For DEM the input estimate 956 

is actually slightly worse than in the previous case. Recalling the results from previous 957 

simulations (Fig. 5 and 6) it appears that the optimal integration step for DEM is Δݐ ൌ TR/2, and 958 

decreasing this parameter does not improve estimation (as it does for SCKS). Conversely, an 959 

excessive decrease of Δݐ  can downgrade accuracy (without an appropriate adjustment of the 960 

temporal precision).  961 

Here we can also compare our results with the results obtained in (Riera et al., 2004), where 962 

the LL-innovation technique was used with a constrained nonlinear optimization algorithm 963 

(Matlab’s fmincon.m function) to estimate the neuronal activation. In our simulations the 964 

neuronal input was parameterized by a set of RBFs, regularly spaced with an inter-distance 965 

interval equal to TR, where the amplitudes of RBFs together with the first three hemodynamic 966 

model parameters, including noise variances, were subject to estimation. The resulting estimate 967 

is depicted by the solid green line at the bottom of Fig. 8. It is obvious that this only captures the 968 

outer envelope of the neuronal activation. Although this approach represented the most advanced 969 

technique at the time of its introduction (2004), its use is limited to relatively short time-seriesseries 970 

that ensures the number of parameters to be estimated is tractable.  971 



We conclude that inversion schemes like DEM and especially SCKS can efficiently 972 

reconstruct the dynamics of neuronal signals from fMRI signal, affording a considerable 973 

improvement in effective temporal resolution. 974 

 975 

Figure 8. Inversion of the hemodynamic model for more realistic neuronal inputs (top left) and fMRI observations 976 
sampled with a TR = 1.2 s (bottom left – dotted line). The input and hidden states estimates obtained by SCKS and 977 
DEM are shown for an integration step ઢ࢚ ൌ ܀܂ ⁄  (top row) and ઢ࢚ ൌ ܀܂ ⁄  (middle row). The parameter 978 
estimates are shown on the bottom right. The best estimate of the input that could be provided by the local 979 
linearization filter is depicted on the middle left panel by the solid green line. 980 



Discussion 981 

We have proposed a nonlinear Kalman filtering based on an efficient square-root cubature 982 

Kalman filter (SCKF) and RTS smoother (SCKS) for the inversion of nonlinear stochastic 983 

dynamic causal models. We have illustrated its application by estimating neuronal activity by (so 984 

called) blind deconvolution from fMRI data. Using simulations of different stochastic dynamic 985 

systems, including validation via Monte Carlo simulations, we have demonstrated its estimation 986 

and identification capabilities. Additionally, we have compared its performance with an 987 

established (DEM) scheme, previously validated in relation to EKF and particle filtering (Friston 988 

et al., 2008). 989 

In particular, using a nonlinear model based on the Lorenz attractor, we have shown that 990 

SCKF and SCKS outperform DEM when the initial conditions and model parameters are 991 

unknown. The double-well model turned out (as anticipated) to be difficult to invert. In this case, 992 

both SCKF and SCKS could invert both states and input correctly, i.e. to track their true 993 

trajectories in about 70% of the simulations (unlike DEM). Both the Lorenz attractor and double-994 

well system are frequently used for testing the robustness of new nonlinear filtering methods and 995 

provide a suitable forum to conclude that SCKF and SCKS show a higher performance in 996 

nonlinear and non-Gaussian setting than DEM. The third system we considered was a linear 997 

convolution model, were the performance of both inversion schemes was comparable. In contrast 998 

to the previous models, the SCKF alone was not sufficient for successful estimation of the states 999 

and input. Although DEM provided a better estimate of the input, the SCKS was more precise in 1000 

tracking hidden states and inferring unknown model parameters.  1001 

We then turned to the hemodynamic model proposed by Buxton et al. (1998) and completed 1002 

by Friston et al. (2000), which comprises nonlinear state and observation equations. The 1003 

complexity of this model, inherent in a series of nonlinear differential equations (i.e. higher order 1004 

ODEs) makes the inversion problem fairly difficult. If the input is unknown, it cannot be easily 1005 

solved by a forward pass of the SCKF or any other standard nonlinear recursive filter. It was 1006 

precisely this difficulty that motivated Friston et al. (2008) to develop DEM by formulating the 1007 

deconvolution problem in generalized coordinates of motion. The same problem motivated us to 1008 

derive a square-root formulation of the Rauch-Tung-Striebel smoother and solve the same 1009 

problem with a recursive scheme.  1010 



Both DEM and SCKS (SCKF) use an efficient LL-scheme for the numerical integration of 1011 

non-autonomous multidimensional stochastic differential equations (Jimenez et al., 1999). Using 1012 

simulations, we have demonstrated that for a successful inversion of the hemodynamic model, 1013 

SCKS requires an integration step of at least Δݐ ൌ TR/2 for the accurate estimation of hidden 1014 

states, and preferably a smaller integration step for an accurate inference on the neuronal input. 1015 

Unlike SCKS, DEM provides the best estimates of the input when the integration step is 1016 

Δݐ ൌ TR/2. This is because it uses future and past observations to optimize a path or trajectory 1017 

of hidden states, in contrast to recursive schemes that update in a discrete fashion. Nevertheless, 1018 

with smaller integration steps, SCKS affords more precise estimates of the underlying neuronal 1019 

signal than DEM under any integration step. Additionally, in the case of more realistic 1020 

hemodynamic simulations we have shown that with the smaller integration step of about 1021 

Δݐ ൌ TR/10 we were able to recover the true dynamics of neuronal activity that cannot be 1022 

observed (or estimated) at the temporal resolution of the measured signal. This takes us beyond 1023 

the limits of the temporal resolution of hemodynamics underlying the fMRI signal. 1024 

An interesting aspect of inversion schemes is their computational cost. Efficient 1025 

implementations of SCKS with the integration step of Δݐ ൌ TR/10  (including parameter 1026 

estimation) are about 1.3 times faster than DEM (with an integration step of Δݐ ൌ TR/2 and a 1027 

temporal embedding n ൌ 6 and ݀ ൌ 3). If the integration step is the same, then SCKS is about 5 1028 

times faster, which might have been anticipated, given that DEM is effectively dealing with six 1029 

times the number of (generalized) hidden states. 1030 

We have also examined the properties of parameter identification of hemodynamic model 1031 

under the SCKS framework. Based on the previous experience (Deneux and Faugeras, 2006; 1032 

Riera et al., 2004), we constrained the hemodynamic model by allowing three parameters to 1033 

vary; i.e. rate of signal decay, rate of flow-dependent elimination, and mean transit time. The 1034 

remaining parameters were kept (nearly) constant, because they had only minor effects on the 1035 

hemodynamic response function. 1036 

Our procedure for parameter identification uses a joint estimation scheme, where both 1037 

hidden states and parameters are concatenated into a single state vector and inferred 1038 

simultaneously in dynamic fashion. The SCKS is iterated until the parameters converge. 1039 

Moreover, the convergence is enhanced by a stochastic Robbins-Monro approximation of the 1040 



parameter noise covariance matrix. This enabled very efficient parameter identification in all of 1041 

the stochastic models we considered, including the hemodynamic model. However, specifically 1042 

in the case of the hemodynamic model, we witnessed a particular phenomenon, which was also 1043 

reported by Deneux et al. (2006). Put simply, the effects of some parameters on the 1044 

hemodynamic response are degenerate, in that different combinations can still provide accurate 1045 

predictions of observed responses. In this context, we have shown in Fig. 7A that different sets 1046 

of parameters can produce a very similar hemodynamic response function. This degeneracy or 1047 

redundancy is a ubiquitous aspect of model inversion and is usually manifest as conditional 1048 

dependency among the parameter estimates. The problem of conditional dependencies is usually 1049 

finessed by optimizing the model in terms of its evidence. Model evidence ensures that the 1050 

conditional dependences are suppressed by minimizing complexity (which removes redundant 1051 

parameters). In our setting, we are estimating both states and parameters and have to contend 1052 

with possible conditional dependences between the states and parameters. In principle, this can 1053 

be resolved by comparing the evidence for different models and optimizing the parameterization 1054 

to provide the most parsimonious model. We will pursue this in a subsequent paper, in which we 1055 

examine the behavior of model evidence, as estimated under cubature smoothing. It should be 1056 

noted, that this work uses models that have already been optimized over the past few years, so 1057 

that they provide the right balance of accuracy and complexity, when trying to explain typical 1058 

fMRI data. However, we may have to revisit this issue when trying to estimate the hidden 1059 

neuronal states as well as parameters. 1060 

There are further advantages of SCKS compared to DEM. Since DEM performs inference 1061 

on states and input in a forward manner only, it is sensitive to misspecification of initial 1062 

conditions. Critically, recent implementations of DEM (Friston et al., 2008) start each iteration 1063 

with the same initial values of the states and the input, resulting in significant error at the initial 1064 

phase of deconvolution. This is not the case for SCKS, which, by applying smoothing backward 1065 

step, minimizes the initial error and converges to the true initial value over iterations. Next, DEM 1066 

can produce sharp undershoots in the input estimate when the hidden states or their causes 1067 

change too quickly. The SCKS does not have this problem. However, the use of generalized 1068 

motion enables DEM to be applied online. Additionally, this framework also allows DEM to 1069 

model temporal dependencies in the innovations or fluctuations of hidden states, which might be 1070 

more plausible for biological systems. In Kalman filtering, these fluctuations are generally 1071 



assumed to be Markovian. Having said this, it is possible to cast dynamical models in 1072 

generalized coordinates of motion as classical Markovian models, where the innovations are 1073 

successively colored before entering the state equation (see Eq. 3 in (Friston, 2008b)). 1074 

Based on our MC simulations, we conclude that in general SCKS provided a more accurate 1075 

inversion of nonlinear dynamic models, including estimation of the states, input and parameters, 1076 

than DEM. Since DEM has been shown to outperform EKF and particle filtering, it makes the 1077 

SCKS the most efficient blind nonlinear deconvolution schemes for dynamic state-space models. 1078 

Finally, all evaluations of the proposed approach, including the comparison with DEM, were 1079 

performed under the assumption that SCKS algorithm had access to the true precision parameter 1080 

on the measurement noise and DEM had access to precisions on all noise components. However, 1081 

for application to the real data we have to be able to estimate these precision parameters as well. 1082 

DEM is formulated as a hierarchical dynamic model, which allows for an elegant triple inference 1083 

on hidden states, input, parameters and hyperparameters. In the case of SCKS we have 1084 

introduced dynamic approximation techniques for the efficient estimation of the parameter state 1085 

noise covariance matrices. We also observed that the input noise variance can be considered 1086 

time-invariant, with a reasonable value (for the hemodynamic model) of about ܸ ൌ 0.1. This 1087 

value seemed to be consistent over different levels of noise and different input. The last 1088 

outstanding unknown quantity is the measurement noise covariance. We have found a robust 1089 

solution (Särkkä and Hartikainen, Under revision; Särkkä and Nummenmaa, 2009) that 1090 

combines the variational Bayesian method with the nonlinear Kalman filtering algorithm for the 1091 

joint estimation of states and time-varying measurement noise covariance in a nonlinear state-1092 

space model. We have implemented this approach for our SCKS scheme with a minimal increase 1093 

in computational cost. Although this variational Bayesian extension was not utilized in our 1094 

proposal (for simplicity), it is now part of SCKS algorithm for future application to the real data. 1095 

There are several application domains we hope to explore within our framework: Since 1096 

SCKS can recover the underlying time course of synaptic activation, we can model effective 1097 

connectivity at synaptic (neuronal) level. Because no knowledge about the input is necessary, 1098 

one can use this scheme to invert the dynamic causal models on the resting state data, or pursue 1099 

connectivity analyses in the brain regions that are dominated by endogenous activity 1100 

fluctuations, irrespective of task-related responses. We will also consider conventional 1101 



approaches to causal inference that try to identify the direction of the information flow between 1102 

different brain regions (e.g. Granger causality, dynamic Bayesian networks, etc.). In this context, 1103 

one can compare the analysis of deconvolved hidden (neuronal) states with explicit model 1104 

comparison within the DCM framework. Another challenge would be to exploit the similarity 1105 

among neighboring voxels in relation to their time courses. There are thousands of voxels in any 1106 

volume of the human brain, and the judicious pooling of information from multiple voxels may 1107 

help to improve accuracy of our deconvolution schemes. Last but not least, we hope to test 1108 

variants of the hemodynamic model, starting with extension proposed by Buxton et al. (2004), 1109 

which accounts for non-steady-state relationships between CBF and CBV arising due to 1110 

viscoelastic effects. This is particularly interesting here, because we can, in principle, 1111 

characterize these inconstant relationships in terms of time-varying parameter estimates afforded 1112 

by our recursive schemes. 1113 

The Matlab code for our methods (including estimation of measurement noise covariance), 1114 

which is compatible with the subroutines and variable structures used by the DEM in SPM8, is 1115 

available from the authors upon request.  1116 

Conclusion 1117 

In this paper, we have introduced a robust blind deconvolution technique based on the 1118 

nonlinear square-root cubature Kalman filter and Rauch-Tung-Striebel smoother, which allows 1119 

an inference on hidden states, input, and model parameters. This approach is very general and 1120 

can be applied to the inversion of any nonlinear continuous dynamic model that is formulated 1121 

with stochastic differential equations. This first description of the technique focused on the 1122 

estimation of neuronal synaptic activation by generalized deconvolution from observed fMRI 1123 

data. We were able to estimate the true underlying neuronal activity with a significantly 1124 

improved temporal resolution, compared to the observed fMRI signal. This speaks to new 1125 

possibilities for fMRI signal analysis; especially in effective connectivity and dynamic causal 1126 

modeling of unknown neuronal fluctuations (e.g. resting state data). 1127 

We validated the inversion scheme using difficult nonlinear and linear stochastic dynamic 1128 

models and compared its performance with dynamic expectation maximization; one of the few 1129 



methods that is capable of this sort of model inversion. Our approach afforded the same or better 1130 

estimates of states, input, and model parameters, with reduced computational cost.       1131 
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